Axioms for Higher Torsion Invariants of Smooth Bundles
نویسنده
چکیده
We explain the relationship between various characteristic classes for smooth manifold bundles known as “higher torsion” classes. We isolate two fundamental properties that these cohomology classes may or may not have: additivity and transfer. We show that higher Franz-Reidemeister torsion and higher Miller-Morita-Mumford classes satisfy these axioms. Conversely, any characteristic class of smooth bundles satisfying the two axioms must be a linear combination of these two examples. We also show how higher torsion invariants can be computed using only the axioms. Finally, we explain the conjectured formula of S. Goette relating higher analytic torsion classes and higher Franz-Reidemeister torsion.
منابع مشابه
Higher Complex Torsion and the Framing Principle
We prove the Framing Principle in full generality and use it to compute the higher FR-torsion for all smooth bundles with oriented closed even dimensional manifold fibers. We also show that the higher complex torsion invariants of bundles with closed almost complex fibers are multiples of generalized Miller-Morita-Mumford classes.
متن کاملExotic Smooth Structures on Topological Fibre Bundles B
When two smooth manifold bundles over the same base are fiberwise tangentially homeomorphic, the difference is measured by a homology class in the total space of the bundle. We call this the relative smooth structure class. Rationally and stably, this is a complete invariant. We give a more or less complete and self-contained exposition of this theory which is a reformulation of some of the res...
متن کاملJ an 2 00 3 MORSE THEORY AND HIGHER TORSION INVARIANTS
We compare the higher analytic torsion T of Bismut and Lott of a fibre bundle p:M → B equipped with a flat vector bundle F → M and a fibre-wise Morse function h on M with a higher torsion T that is constructed in terms of a families Thom-Smale complex associated to h and F , thereby extending previous joint work with Bismut. Under additional conditions on F , the torsion T is related to Igusa’s...
متن کاملDiffeomorphisms, Analytic Torsion and Noncommutative Geometry
We prove an index theorem concerning the pushforward of flat B-vector bundles, where B is an appropriate algebra. We construct an associated analytic torsion form T . If Z is a smooth closed aspherical manifold, we show that T gives invariants of π∗(Diff(Z)).
متن کامل2 SEBASTIAN GOETTE In [ BL ]
We compare the higher analytic torsion T of Bismut and Lott of a fibre bundle p:M → B equipped with a flat vector bundle F → M and a fibre-wise Morse function h on M with a higher torsion T that is constructed in terms of a families Thom-Smale complex associated to h and F , thereby extending previous joint work with Bismut. Under additional conditions on F , the torsion T is related to Igusa’s...
متن کامل