Axioms for Higher Torsion Invariants of Smooth Bundles

نویسنده

  • KIYOSHI IGUSA
چکیده

We explain the relationship between various characteristic classes for smooth manifold bundles known as “higher torsion” classes. We isolate two fundamental properties that these cohomology classes may or may not have: additivity and transfer. We show that higher Franz-Reidemeister torsion and higher Miller-Morita-Mumford classes satisfy these axioms. Conversely, any characteristic class of smooth bundles satisfying the two axioms must be a linear combination of these two examples. We also show how higher torsion invariants can be computed using only the axioms. Finally, we explain the conjectured formula of S. Goette relating higher analytic torsion classes and higher Franz-Reidemeister torsion.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Higher Complex Torsion and the Framing Principle

We prove the Framing Principle in full generality and use it to compute the higher FR-torsion for all smooth bundles with oriented closed even dimensional manifold fibers. We also show that the higher complex torsion invariants of bundles with closed almost complex fibers are multiples of generalized Miller-Morita-Mumford classes.

متن کامل

Exotic Smooth Structures on Topological Fibre Bundles B

When two smooth manifold bundles over the same base are fiberwise tangentially homeomorphic, the difference is measured by a homology class in the total space of the bundle. We call this the relative smooth structure class. Rationally and stably, this is a complete invariant. We give a more or less complete and self-contained exposition of this theory which is a reformulation of some of the res...

متن کامل

J an 2 00 3 MORSE THEORY AND HIGHER TORSION INVARIANTS

We compare the higher analytic torsion T of Bismut and Lott of a fibre bundle p:M → B equipped with a flat vector bundle F → M and a fibre-wise Morse function h on M with a higher torsion T that is constructed in terms of a families Thom-Smale complex associated to h and F , thereby extending previous joint work with Bismut. Under additional conditions on F , the torsion T is related to Igusa’s...

متن کامل

Diffeomorphisms, Analytic Torsion and Noncommutative Geometry

We prove an index theorem concerning the pushforward of flat B-vector bundles, where B is an appropriate algebra. We construct an associated analytic torsion form T . If Z is a smooth closed aspherical manifold, we show that T gives invariants of π∗(Diff(Z)).

متن کامل

2 SEBASTIAN GOETTE In [ BL ]

We compare the higher analytic torsion T of Bismut and Lott of a fibre bundle p:M → B equipped with a flat vector bundle F → M and a fibre-wise Morse function h on M with a higher torsion T that is constructed in terms of a families Thom-Smale complex associated to h and F , thereby extending previous joint work with Bismut. Under additional conditions on F , the torsion T is related to Igusa’s...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2005